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ABSTRACT Advancements in materials science have significantly transformed materials discovery and
advanced manufacturing. This, along with the rapid development of sensing and instrumentation, results
in a continuous increase in data volumes. To address the limitations of conventional manual analysis, this
paper introduces an Al-driven framework for high-throughput chemical analysis of material surfaces at the
micro- and nano-scale. The framework integrates unsupervised machine learning with secondary electron
hyperspectral imaging (SEHI). It consists of four stages: hyperspectral image processing via tiling, spectral
peak extraction, peak categorisation by probabilistic clustering, and chemical analysis. Tiling enables the
capture of local spatial-spectral information and generation of a large number of training samples from a
single SEHI image stack. After tile-wise spectral peak extraction, the distribution of the peak positions is
accurately represented by probabilistic clustering with a Gaussian mixture model (GMM) or a Dirichlet
process Gaussian mixture model (DPGMM). Each peak corresponds to a specific chemical bond or element
in a material, reflecting the unique spectral characteristics. The performance of the GMM and GPGMM
approaches is validated over a case study for identifying chemical elements or bonds of complex metal
alloy and carbon films. The results demonstrate accurate chemical analysis, yielding relative errors within
+15% compared to the theoretical model of the valence band density of states. This work is a step forward
towards automated material analysis across different tasks such as identifying chemical elements and bonds,
visualizing surface (in)homogeneity in metal alloy films for guiding film printing, and supporting digital
twins integration for advanced manufacturing.

INDEX TERMS Advanced manufacturing, artificial intelligence, Gaussian mixture models, material surface
chemistry, microscopy, probabilistic clustering, secondary electron spectroscopy, unsupervised learning.

I. INTRODUCTION
Materials science and industry are embracing the broad
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prediction as well as characterisation [1], [2], [3], [4], [S],

(61, [71, [8], [9].

A. MACHINE LEARNING FOR MATERIALS ANALYSIS
Machine learning has been proven to be a powerful tool
to excavate complicated input—output mappings. As stated
in [10], the role of machine learning and big-data science
in manufacturing industry is evolving from merely providing
basic machine automation to information automation, and
ultimately to knowledge automation. It emphasises the
growing importance of Al-aided information extraction from
data in modern manufacturing processes.

The recent advancements in machine learning hold great
potential to enhance diverse aspects of materials science
research and industry, including processing high-dimensional
data, automating data analytical workflows, and uncovering
new knowledge [11], [12], [13], [14]. One common practice
is to apply machine learning into the discovery of complex
composition-structure-property relationships in both real and
hypothetical materials [8]. For example, correlations between
the macro-scale mechanical properties of heterogeneous
materials and their microstructure were established by using
a convolutional neural network (CNN) based deep learning
method [15]. Similarly, an artificial neural network was
deployed to reveal the complex relationship between the
inclusion features and fatigue life of steels [16]. Yu et al.
[17] applied a multimodal deep neural network (DNN)
for learning the mechanical properties of steels from the
material chemical composition. Besides, a Gaussian process
regression (GPR) model was trained to establish, and to
understand, the structure-property linkages of synthetic
microstructure towards computationally aided materials
design [18]. In addition to the application examples listed
above, machine learning also plays an important role in
providing chemical insights, in favour of the data-driven
discovery (“‘fourth paradigm of science”) [8]. For instance,
Paul et al. [19] proposed an Al solution based on mixed
DNN architectures which can be used to predict chemical
properties, such as activity, toxicity, as well as solubility, from
two molecular representations as the inputs.

However, much of the success in supervised machine
learning approaches is heavily dependent on the availability
of large and representative labelled training datasets. Such
achievement would be limited in many real-world situations,
particularly in the cases involving experimental measure-
ments, where both data acquisition and labeling become
difficult or time-consuming. Especially, when characterising
unknown material samples or discovering new structures,
it would be more challenging to obtain appropriate prior
knowledge, labelled or ground truth data, for deploying
supervised learning algorithms in practice.

Given these challenges, there is a strong need to develop
unsupervised machine learning solutions, which inherently
requires less endeavors in data preparation. Some attempts
have been made in this area, however, so far there is
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limited research undertaken to provide unsupervised learn-
ing strategies in materials applications. Vlcek et al. [20]
applied a variational autoencoder to compress the atomic
configurational data for identifying defects and monitoring
abnormal behavior in the composition phase. Uesug et al. [21]
demonstrated the validity of applying non-negative matrix
factorization (NNMF) in images acquired by scanning
transmission electron microscopy to deduce the underlying
diffraction patterns of titanium oxide nanosheets. An unsu-
pervised approach using swarm intelligence and emergence
was proposed to classify archaeological materials [22].
Aversa et al. [23] combined supervised and unsupervised
learning approaches for semi-supervised classification of
nanostructured materials images acquired by scanning elec-
tron microscopy. Besides, a clustering algorithm based on
neural network architecture was proposed to classify fracture
surfaces [24].

These above are only several examples of unsupervised
machine learning applications to materials science. The key
to advancing materials science and engineering lies in the
effective integration of established machine learning tools
into materials engineering workflows [25]. This requires
aligning the development of Al with the real-world demands
and challenges in materials research, whilst remaining guided
by domain-specific knowledge to ensure systematically inter-
pretable
outcomes.

For instance, a particularly longstanding challenge here
is how to bridge the theoretical or computational materials
science with experimental areas such as materials charac-
terisation. Often this includes scanning electron microscopy
(SEM), one of the most widely used experimental characteri-
sation tools in materials science. This is reflected in extensive
recent research efforts exploring the adoption of unsupervised
learning techniques with SEM images across various domains
of materials science. The application fields include arts [26],
geology [27], [28], [29], semiconductors [30], [31], building
materials [32], concrete [33], additive manufacturing [34],
and metal films [35]. A significant attention is given
to image denoising and quality enhancement for materi-
als [30], [31], [36], [37], [38], contour detection [39], image
classification [23], segmentation [28], as well as pattern
recognition [35].

These previous research studies have demonstrated the
effectiveness of unsupervised learning in materials char-
acterisation using SEMs. Other studies have shown how
unsupervised learning can be integrated with SEM imaging
and local property analysis obtained from energy dispersive
X-ray spectroscopy (EDS), referred to as SEM-EDS [26],
[32], [33], [40]. For instance, automated mineral phase
analysis through image segmentation and unsupervised
clustering was developed in [40]. This helps the analysis of
sparse EDS spectral data and their combination with SEM
images for graph construction to obtain image segments. The
research work [26] presents an unsupervised learning-based
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data analysis approach for automatically extracting chemical
information at the elemental level from painting materials
using SEM-EDS instrumentation. Other studies such as [32]
demonstrate that clustering methods, i.e., the k-means and
Gaussian mixture model (GMM), combined with SEM-
EDS techniques, can classify micromechanical properties of
building materials.

B. SECONDARY ELECTRON HYPERSPECTRAL IMAGING
SEM, as one of the most popular and versatile micro-
and nano-scale imaging methods, has been widely used
across a diverse range of industrial applications and research
fields, including manufacturing, nanotechnology, material,
biological, as well as medical sciences [41]. The working
principle of a SEM is to locally generate, and then detect
electron emissions created by elastic and inelastic interac-
tions between the scanning electrons and the sample. SEMs
are typically employed for investigating surface morphology,
topography, along with chemical composition of materials
by offering detailed and high-resolution images of their
surfaces [42], [43].

Secondary electron hyperspectral imaging (SEHI) is a
form of hyperspectral imaging technique that utilises energy
filtering in the SEM to generate a hyperspectral three-
dimensional (3D) data cube [44]. The SEHI data cube is
made up of high-resolution sequential images resulting from
secondary electrons (SEs) emitted from the same sample
region. Each SE image is produced from a specific energy
range of the SEs that pass a low-pass energy filter before
detection. By deriving SE spectra from the region of interest
(ROI) of the sequential SEs images, SEHI is able to provide
local information about the sample surface chemistry, making
it a valuable tool for characterising materials at the micro- to
nano-scale [45].

In contrast to SEM-EDS techniques, SEHI fundamentally
differs in both information depth and analytical capability.
While EDS offers elemental analysis at micron-scale depths,
SEHI captures chemical bonding states at the nanoscale,
providing unique insights into surface chemistry of nanoscale
materials. For a detailed technical discussion, please see
Figures S3-S5 and related analysis in Supporting Mate-
rial [46] of [47]. SEHI is an emerging technology for
experimentally investigating the morphology and chemical
properties of material surfaces. SEHI has proved its potential,
especially for carbon based materials, such as in tracking
controlled changes to the surface chemistry of poly(glycerol
sebacate)-methacrylate (PGS-M) polymer through plasma
treatments, and the ageing surface of newly exfoliated
highly oriented pyrolytic graphite (HOPG) [48], as well as
complex carbon and metal/carbon systems [49], since 2019.
Compared to the transmission electron microscopy, SEMs
and SEHI are often used to inspect large areas of material
samples. Chemical strongly localised inhomogeneity can
be masked when spectral analysis is carried out from
the whole area that is large compared to the localised
inhomogeneity.

173978

C. MACHINE LEARNING FOR SEHI DATA ANALYSIS
The success of using SEHI technique across real-world mate-
rial applications can be limited by manual data analysis [50].
An existing problem is that manual analysis often comes
along with human intuition. It can lead to inconsistency
and inaccuracy due to cognitive biases among different
investigators. A common source of human error here is the
manual selection of the ROIs, which always greatly rely on
the judgment of investigators based on their expertise or
understanding [51]. In some materials systems, variations in
surface chemistry are linked with the surface microstructural
features [48]. However, this is not always the case. In other
materials, the surface topographical features can negatively
introduce cognitive bias in materials analysis. Thus, it is
crucial to develop an automated and unbiased data analysis
approach, towards accurate high-throughput materials char-
acterisation from laboratory to industrial applications.
Integrating machine learning with SEHI analytical tech-
nique offers a promising solution that captures the rich spatial
and spectral information from experimental 3D SEHI data.
As stated in Section I-A, unsupervised machine learning
approaches are powerful tools to tackle the challenges in such
applications where no (or very little) ground truth data and
only small datasets are available for learning. In response to
such need, this paper proposes a novel Al-driven framework
by combining SEHI with probabilistic clustering algorithms
which can be used for characterising materials surface
chemistry down to nano-scale. This framework is expected to
promote automated materials chemical analysis, particularly
for investigating complex carbon-based material systems
where the atoms of carbon can bond together in diverse ways.

D. MAIN CONTRIBUTIONS

One of the primary contributions of this work to the materials
science research community consists in the development
of unsupervised learning approaches that can facilitate the
integration of theoretical knowledge with simulated data
into an SEM-based experimental workflow for materials
characterisation. Specifically, the simulated data refers to the
density of states (DOS) model obtained from first-principles
calculations [52], which can be retrieved from the publicly
available database in The Materials Project [53]. The DOS
model essentially represents the number of available quantum
states, e.g. electron energy levels per unit energy within a
material [54]. It serves as a theoretical reference for validating
our experimental results of SEHI data analysis.

Unlike previous studies that combined secondary electron
imaging with EDS, SEHI utilises the same signal (SE
electrons) for both imaging and spectroscopy. This offers high
spatial resolution, which is crucial for characterising complex
material systems, e.g., containing nano-particles. In addition,
SEHI enables insights into chemical bonding-level informa-
tion for materials characterisation that was not previously
accessible through SEM-EDS techniques. However, the com-
plexity and large volume of spectral image data obtained from
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SEHI necessitate the development of a new automated data
analysis workflow. To demonstrate this, we have presented
an example of a complex material system containing metallic
nano-particles dispersed in a carbon matrix, fabricated via 3D
printing, and requiring reliable analysis of experimental SEHI
data.

The main contributions of this paper are the following:

1) It proposes a novel Al-driven framework for automat-
ing SEHI data analysis. It creates chemical information
maps and links them with the theoretical DOS model.
This enables accurate chemical identification and
characterisation of materials (in)homogeneity at micro-
and nano-scales. A unique aspect of this work is that it
bridges experimental results with theoretical analysis.

2) It develops an efficient tiling partitioning of a SEHI
image stack into a large number of localised spatial-
spectral regions. This allows capturing the rich
spatial-spectral information and feeding diverse data
into the downstream machine learning task.

3) Combined with the image tiling process, we adopt
probabilistic clustering models, a GMM and a Dirich-
let process Gaussian mixture model (DPGMM), for
unsupervised learning. The developed framework does
not require labelled training datasets. It offers two
pathways for categorising spectral peaks and meets
user needs in different scenarios where the cluster
number of the material being analysed is either known
a priori or needs to be inferred automatically.

4) The performance of this new framework is thoroughly
evaluated over the real SEHI data collected from a com-
plex metal alloy and carbon material system, showing
accurate chemical identification by comparison with
the theoretical DOS model.

To the best of the authors’ knowledge, for the first time, this
work proposes an automated analytical workflow for SEHI
data, and quantifies the experimental measurement errors in
the identification of chemical bonds using SEHI, with ref-
erence to the theoretical DOS model. Additionally, research
outputs include publicly available SEHI datasets [S5] and
an Al-powered data analytical tool [56] to benefit the wider
research community.

The rest of this paper is organised as follows: Section II
introduces the mathematical background of the adopted
probabilistic clustering approaches, GMM and DPGMM.
Section III presents the overall framework proposed.
Section IV demonstrates our framework through a real-world
use case, detailing the problem, datasets, implementation, and
evaluation metrics. Section V provides the experimental val-
idation results and ablation studies. Section VI summarises
the conclusions and discusses future work.

Il. PRELIMINARIES

Clustering is a fundamental problem in machine learning,
data mining, and statistical analysis [57]. Unsupervised
clustering identifies inherent data groups, no need of prior
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knowledge of the group labels. Under the assumption that
data is generated by a specific statistical model, probabilistic
clustering approaches estimate the model parameters to fit the
data distribution. In contrast to some conventional clustering
techniques which rely on distance-based or density-based
metrics, probabilistic clustering approaches are flexible,
robust and versatile [58]. They provide a probabilistic
interpretation of the clustering process, hence making the
results statistically meaningful, and less sensitive to data
outliers. In this paper, two probabilistic clustering methods,
GMM and DPGMM, are adopted for clustering all spectral
peaks produced from the image tiling on SEHI data.

A. GAUSSIAN MIXTURE MODELLING

GMM represents a complex distribution as a weighted
combination of multiple Gaussian distributions for a dataset
X of N data points X = f{x1,...,x;,xy}, which can be
formulated as

K
pe) = D" o N (i | . o) (D
k=1
where K is the cluster number and AV (x; | gz, Xx) denotes
the k-th Gaussian component with its mean vector puy,
covariance matrix X, and wy the mixture probability (or
called component proportion). The sum of wy is equal to 1,
namely ZkK: Jor = L.
The model parameters of these Gaussians, {@, u, X},
are iteratively computed by maximising the log-likelihood
function [59]

N K
InLX | o, p, T) =D In (Z N i | g 2k>). @
k=1

i=1
where In is the natural logarithm, and InL(X | o, p, X)
denotes the log-likelihood function.

To maximise this log-likelihood function, the model
parameters are iteratively estimated via the expectation-
maximisation (EM) algorithm [60], [61]. The posterior
probability, r;, given the model parameters {w, pu, X},
is expressed as follows

kN @i | e, Zi)

S NG | s Zh)

where r; ; represents the posterior probability that data point
x; belongs to cluster k, reflecting the confidence of the assign-
ment. The main challenge of the GMM clustering algorithm
is the necessity of choosing the appropriate number K of
clusters. Then the Bayesian information criterion (BIC) can
be employed for model selection, by measuring the balance
of the goodness of model fit with the simplicity of model [62].

rig =pk | xi, 0, u, X) =

B. DIRICHLET PROCESS GAUSSIAN MIXTURE MODELLING
By employing a Dirichlet Process (DP) prior into mixture
modelling, DPGMM extends the ability of GMM to deal with
the unknown number of components in a mixture. DP prior
is commonly served in non-parametric Bayesian approaches,
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enabling the number of clusters inferred from the dataset
automatically [58]. Additionally, the singularity problem can
be effectively solved through the use of a Bayesian prior into
probabilistic mixture modelling. However, exact inference for
DPGMM is not tractable, which means it cannot be evaluated
analytically. In such scenarios, approximation techniques
need to be implemented so as to estimate the target posterior
distribution. In this work, model learning in DPGMM is
accomplished via the collapsed Gibbs sampling algorithm,
which belongs to Markov Chain Monte Carlo (MCMC)
sampling methods [63], [64].

A symmetric Dirichlet distribution, Dir, can be param-
eterised by a single hyperparameter, «, also known as the
concentration parameter. Intuitively o controls how likely
to create a new cluster. Large o results in more clusters
expected. A DP can be acquired by taking the limit of
K — o0. Accordingly, G ~ Dir (a), and G becomes
an infinite dimensional probability vector, representing the
component proportions in the mixture modelling. Chinese
restaurant process (CRP) is a probabilistic interpretation
of the DP, which defines a distribution over an infinite
number of clusters. This allows for a flexible, non-parametric
clustering approach where the number of clusters is inferred
from the data rather than fixed in advance [65]. In the
CRP, a new customer x; selects a table depending on
the number of customers already sitting at each table
occupied [66]. As the Dirichlet distribution is a conjugate
prior of categorical distribution Cat, it is commonly utilized
in Bayesian inference as a prior distribution [67]. Namely
zi | G ~ Cat(G), where z; denotes the discrete latent
variable. z; represents the cluster assignment for data point
x;. It corresponds to the table assigned to the customer x; in
the CRP.

Regarding the mean p; and covariance X; of each
Gaussian component, a Normal-Inverse-Wishart (NIW) dis-
tribution is utilized as the prior distribution. It is governed by
four hyperparameters @ = { Ao, po, vo, So} and {py, Zi} ~
NIW (0). The NIW distribution is a conjugate prior of a
multivariate normal distribution A [65], [68]. The relevant
expressions are,

b
IL|IL0,)\0,E”N(M|IL0,)\—O), 4
z | So,vo ~ W (T | So, v0), Q)
xilzio {mp, Te} ~ N (g, ) (6)

During each iteration of model learning process based on the
Gibbs sampler, each data point is selected one by one for
performing the assignment of clusters, either to an existing
cluster or a new cluster. After the cluster assignment, the
model parameters are updated accordingly,

Aopg + nx
= 2080 TR 7
n " 7
An=Xo+n, (8)
vy = v + 1, )
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where n is the number of data points which have been
observed, and X denotes the mean of observations.

Benefiting from the conjugate prior distributions, several
parameters can be marginalised analytically when model
learning via the collapsed Gibbs sampler. The posterior
probability for the data point x; assigned to cluster k can be
presented by,

plai=klxi X ik z-ia0)
pGEi=klz—ja) pxilz=kX_it90). (12)

where z_; = {zj | j # i} is the cluster assignments excluding
zi,and X_jx = {xj lzi=k,j# i} refers to the set of data
points already assigned to that cluster k, except x;.

It can be seen from (12) that the posterior probability
is derived from two terms, namely the prior probability
and the likelihood. The expression of the prior term
p(zi=k|z_j,a) is straightforward under the CRP. The
likelihood term p (X,~ lzi=k, X_ix, 0) can be calculated via
the posterior predictive distribution, p(x; | X_;«, @), which
describes the likelihood of the current data point x; under the
given observed data. It is proved to be equal to the probability
density of a multivariate t-distribution [65].

IlIl. OVERALL FRAMEWORK

The proposed framework consists of four main stages:
hyperspectral image processing via tiling, spectral peak
extraction, peak categorisation by probabilistic clustering
and surface chemical analysis. Fig. 1 presents the overall
Al-powered framework of the automated SEHI data analysis
approach.

A. HYPERSPETRAL IMAGE TILING

As depicted in Fig.1, a SEHI data cube can be described
in a 3D coordinate system, where the xy-plane denotes the
image plane and the z-axis represents the energy of the SEs
detected in the SEM. In order to overcome the limitations
of manual selection of ROI in earlier work [48], [49], [69],
[70], [71], we propose to represent the hyperspectral images
by subdividing into small regions, called tiles, in the xy-
plane. Next, the clustering and spectral analysis is performed
directly on these tiles, instead of selected ROI or the whole
field of view (FOV).

Firstly, sequential hyperspectral images in a SEHI data
cube should be aligned based on image morphology features,
before performing subsequent spectral analysis [70]. Image
alignment is usually accomplished through a template match-
ing algorithm. For using template matching here, python code
can be found [72] and a standalone Matlab application is
publicly available [73]. Then we choose non-overlapping and
square tiles so as to preserve the local details and morphology
information of the hyperspectral images. The tile size can be
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FIGURE 1. The overall framework of the proposed SEHI data analysis approach for automated materials chemical analysis. The
framework consists of: image tiling, spectral peak extraction, peak categorisation by unsupervised clustering, and chemical
interpretation along with probability heat maps to support decision-making. We segment a 3D SEHI data cube into small tiles
along its image plane, and extract the peaks from the spectral curves for each tile. Then the distribution of these spectral peaks is
accurately modelled by probabilistic clustering methods, GMM and DPGMM.

defined by the users based on specific application needs. And
the tiles traverse vertically and horizontally over the whole
FOV. This tiling process automatically creates numerous
ROIs, instead of relying on just a single or few selected ROIs
by the users. For every image slice, the intensity value of each
tile is computed by averaging its pixels belonging to this tile.
After tiling, the raw SEHI data cube is downsized over the
xy-plane. Then, by differentiating the intensity values along
the z-axis, a spectrum curve of SEs emission is extracted from
each tile. In addition, the spectral curves are further smoothed
along the z-axis by averaging the intensity values of every two
adjacent data points to reduce noise, as described in [70].

B. SPECTRAL PEAK EXTRACTION

Peaks can be defined as local or sometimes global maxi-
mums, in comparison with the adjacent data points. In this
work, we initially define a peak as a local maximum
with two neighbours on each side, and then set reasonable
criteria to select predominant and informative peaks from all
potential peaks. The spectral peaks are determined using the
following steps:

1) FILTER OUT WEAK PEAKS BY THE PEAK HEIGHT

Small peaks with heights below a specified threshold value
are removed to account for noise and fluctuations in the
spectra curves. The threshold value is defined by the ratio of
peak height with respect to the global maximum. It controls
the sensitivity of peak detection. Lower threshold values
preserve weak spectral features but increase the chance
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of noise inclusion. In this work, the threshold value was
empirically set as 0.4. The threshold can be adjusted by
end user, to adapt to different materials and instruments in
practice.

2) REMOVE THE LOWER PEAK WHEN TWO PEAKS ARE VERY
CLOSE TO EACH OTHER

The idea here is to keep ““true’” peaks in cases where a cascade
of peaks can appear in a consistent upward or downward
trend. The spectral curves represent the fluctuations in the
intensity of SEs emissions from the material’s surface being
analysed. The peaks in the spectra curves are typically
regarded as spectral signatures of the material for chemical
identification [74].

Other peak-related properties, such as peak height or
width, may contain supplementary information. For instance,
peak width can be indicative of disorder in some materials,
as demonstrated for semicrystalline polymers [75] and
perovskite materials [75], [76]. Yet, these properties are
highly sensitive to experimental conditions, and instrument
parameters [75]. They are fundamentally affected by complex
interactions between SEs emitted and material surfaces.
For example, peak height can be strongly influenced by
experimental conditions, including the instrument utilised,
and the working distance during the use of the instrument
that can affect the detection of SEs [45]. In contrast,
peak position is a more robust and reliable feature for
chemical identification. The peak positions across different
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instruments can be corrected and aligned through calibration
against reference materials [70].

Our choice to utilise spectral peak positions as the sole
feature for clustering is driven by the study’s core objective
of achieving reliable and accurate chemical identification
and assignment. While extending this framework to other
applications ( e.g., structural disorder analysis) is promising,
such extensions require careful consideration of technical
challenges depending on the specific needs of applications
that fall beyond the scope of this study.

C. PEAK CATEGORISATION BY PROBABILISTIC
CLUSTERING

After extracting the spectral peaks from all tiles, the
subsequent task is to categorise these peaks. In other words,
itis to label the spectral peaks based on their energy positions,
and sort them according to their labels. By employing proba-
bilistic clustering, the inherent characteristics of the spectral
peaks can be inferred from its probability distribution.
We adopt the GMM and DPGMM approaches for clustering
the spectral peaks collected from all tiles, as the spectral data
and its distribution inherently exhibit multi-peak behaviour.
To meet the needs in real-world circumstances, depending
on whether the cluster number is known, two clustering
schemes are presented: (1) The GMM has a finite number
of Gaussian components with a specified cluster number,
(2) The DPGMM, with an infinite number of Gaussian
components, handles an unknown number of clusters.

When adopting the GMM, one primary question is how to
choose a appropriate cluster number K. In cases where the
number of clusters (e.g., chemical components) in material
sample is known, investigators can set the cluster number K
directly. When K is unknown and computational efficiency
is a concern, the GMM can be used in combination with
the Bayesian information criterion (BIC) [77] or Akaike
information criterion (AIC) to find the optimal K. BIC and
AIC measures are widely used for model selection, balancing
the goodness of model fit with model complexity [78].
Both criteria follow the principle that lower values indicate
better performance. In practice, the BIC is often preferred
over the AIC to mitigate model overfitting, as it imposes
a stronger penalty on model complexity [79], particularly
for large datasets. Thus, the BIC is used in this work.
In contrast, DPGMM is able to automatically learn the cluster
number from a DP prior. It is flexible in estimating the
effective complexity of the mixture model, however Bayesian
inference requires additional computation [80].

The parameters of the Gaussian components, derived from
clustering, have significant physical meanings related to
the material chemistry. As the peak positions for clustering
are one-dimensional data, its variance o2 is used, instead
of X, in later descriptions for simplicity. For the k-th
Gaussian component, its mean uj denotes the centre of the
Gaussian. It is the most likely peak position that can be
used for chemical identification. The standard deviation oy
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describes how concentrated the bell-shaped curve is around
its centre w. This is beneficial for calculating the associated
confidence interval, which helps quantify the uncertainty of
the peak identification. The mixing coefficient wy reflects the
proportion of SEs emission from the corresponding energy
excitation occurring at (.

D. MATERIAL SURFACE CHEMICAL ANALYSIS

1) CHEMICAL INFORMATION MAP

Following the clustering results, we can decompose a SEHI
image stack into K intensity maps or called layers of
SEs emission. It helps to visualise the individual Gaussian
components obtained. And each intensity map is associated
with a specific chemical bonding type or a combination of
multiple chemical bonds (or elements), which can be inferred
from the spectral peak positions. The maps integrate the
chemical information with the topography or morphology of
the material sample surfaces, in favour of surface chemical
analysis at micro- to nano-scale.

To generate the k-th intensity map L, we reallocate the
intensity values over their corresponding spatial locations
on the image plane. For the j-th tile that have associated
i-th spectra peak being assigned to the k-th cluster, the
corresponding emission intensity /;jx is picked. And then
we locate this intensity /;;x at the j-th tile from which
the spectra peak originates. In terms of the tiles without
any associated spectral peaks labelled as k, zero-padding is
carried out on these tiles. By doing so, the raw intensity
map Ly is produced. Moreover, in order to make L; more
informative, we incorporate probabilistic confidence into
I; j k- Specifically, I; j x associated with the i-th spectra peak
is weighted by its posterior probability r; x which measures
the uncertainty of the cluster assignment.

2) PHYSICAL INTERPRETATION OF CLUSTERS
The physical interpretability of the proposed Al framework
is preserved via three key aspects of our methodology:

1) Physically meaningful features: Using the spectral
peak positions as the feature for clustering, which
directly correspond to chemical informatics (bonds or
elements) using SEHI. As demonstrated in [69], [81],
and [82], the peak position is leveraged as an informa-
tive spectral feature for the chemical identification of
material specimens.

2) Domain-specific constraints: To ensure good practice
of SEHI measurement, we have implemented:

(a) Energy range restrictions (0 to 7 eV) during the data
collection, as SEHI provides reliable measurements in
low energy ranges, as explained in [69].

(b) Peak intensity threshold for filtering weak peaks,
potentially noise-induced, in the step of peak extrac-
tion. The threshold can be adjusted by end user, to adapt
to different materials and instruments in practice;

(c) Optional user input of cluster numbers when the
prior knowledge is available, when using the GMM
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clustering method. It provides controlled clustering to
meet different scenarios.

3) Probabilistic clustering: Benefiting from the GMM
and DPGMM, their probabilistic nature offers robust-
ness to noise and outliers in the experimental data.

Potential ambiguities in chemical assignment could occur,
and itis reflected in the probability heatmap (shown in Fig. 8).
These ambiguities primarily stem from instrumentation and
measurement limitations, rather than from the clustering
methods. They are mainly due to the common gap between
theoretical predictions and experimental capabilities. When
the spectral resolution in the experimental SEHI data is
insufficient, it is difficult to distinguish between chemical
bonds or elements with closely spaced theoretical energies.
In such cases, it would be helpful to improve the spectral
resolution of the instrument, or to consider cross-validation
with other established spectroscopies. From an analytical
viewpoint, end user can set a confidence threshold to
indicate low-confidence assignments, based on the posterior
probability of clustering results.

E. THEORETICAL ALIGNMENT FOR CHEMICAL
IDENTIFICATION

This part presents how to align the Gaussian components,
derived from experimental SEHI data, with the theoretical
DOS model. The DOS model is retrieved from the Materials
Project [53], [83], [84] through its open API to obtain
theoretical spectra data as reference. Through comparison
with the theoretical DOS model, we are able to reveal and
rank the likely chemical elements or bonds associated with
the Gaussian components.

To perform the theoretical alignment, one manual way
is to match the experimental spectral peaks (from SEHI
data), especially the predominant and well-separated peaks,
with the theoretical peaks (from the DOS model). Matching
these experimental spectral peaks with the theoretical peaks,
by the peak positions, suggests the presence of corresponding
chemical elements or bonds present in the material sample.
However, such manual peak matching can lead to less
accurate chemical identification.

To overcome this limitation, we propose an automated peak
matching solution for materials chemical identification. This
approach evaluates the similarity of the spectral peaks derived
from experimental and theoretical data. Thus it can support
further decision-making based on the similarity measure.
To clarify, the theoretical spectra data is retrieved from
the DOS model of likely chemical species such as specific
chemical elements and bonds. The experimental spectra data
is obtained using the proposed Al framework with SEHI data
collected from the material specimen under test. The purpose
of peak matching is to figure out the most likely chemical
species or bonds associated with the Gaussian components
obtained from the analysis.

Our approach addresses the challenge of accurately char-
acterising material composition by combining preliminary
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Algorithm 1 Automated Peak Matching Workflow
Require:
1: (1) Input: Gaussian components obtained from SEHI
(Cy), theoretical DOS candidate (D,;)
2: (2) Preliminary selection:
3: for each Gaussian Cy with parameters (g, ox) do
4: Find D,, with peak locations up € [ux — 20%, uix +
20%]
5: end for
6: (3) DOS candidate evaluation:
7: for each Gaussian Cy do
8
9

Number of candidates D,, satisfying peak range — Np
if Np = 1 then Yes > single candidate
10: Assign Dy, to Cy with probability 1

11: — Jump to Output

12: else No > multiple candidates
13: (4) Data preparation for similarity check:

14: Downsample DOS spectral data;

15: Find peaks in downsampled DOS and SEHI data;
16: Generate synthetic spectra data;

17: (5) Similarity measure by cross-correlation

18: (6) Decision making based on probability scores

19:  end if

20: end for

21: Output: Heat map visualising probability assignment of
chemical elements/bonds to Gaussian components

peak matching with quantitative similarity assessment for
probabilistic chemical assignment. The pseudocode imple-
mentation of the automated peak matching approach is
presented in Algorithm 1. As explained by Fig. 2 and
Algorithm 1, the proposed peak match workflow accom-
plishes six steps:

(1) Data collection of experimental and theoretical
spectra;

(2)  Preliminary selection of potential candidates of
the DOS model: For each Gaussian component, find the
promising candidates of the DOS models which have the
spectral peaks located in the corresponding peak range
(energy band). The energy range of a given Gaussian
component is set as g £20, corresponding to 95% confidence
level. Only DOS models that meet this preliminary selection
criteria are retained as promising candidates. Specifically,
if no peaks in the DOS model fall within the energy range
associated with a given Gaussian component, it indicates that
this Gaussian component is unlikely to represent the relevant
chemical species;

(3) Check how many potential DOS candidates meet the
preliminary criteria;

(4) If there are multiple candidates, need data preparation
for running subsequent cross-correlation: Details on the data
preparation of synthetic spectra are provided in the following
paragraph;
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Preliminary selection of
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DOS models based on
peak matching

For each Gaussian
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Yes

1
1

1 1
1

: Gaussian components obtained from | |
: GMM or DPGMM :
| 1
1 1

experimental data of the test material
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Assess the similarity between the synthetic data
derived from the DOS and experimental data

: Heat map for decision-making:
1 Provide the probability of assigning chemical
: elements or bonds to each Gaussian component

) Downsampling spectral data of the DOS model

(ii) ¥

(4)

Data preparation for running similarity check

Identify spectral peaks from the downsampled DOS data

and experimental data associated with each Gaussian

(i) U

According to the peak locations, generate Gaussian data
series centred around each peak (synthetic data)

FIGURE 2. Flow diagram representation of the automated peak match workflow for materials chemical identification. The
reference spectra are retrieved from the theoretical DOS models of likely chemical species (specific chemical elements and

bonds).

(5) Similarity measure using cross-correlation: Cross-
correlation algorithm is used to determine the similarity
between the experimental and theoretical data. The high-
est cross-correlation coefficient infers the most relevant
DOS model among the DOS candidates, namely the most
likely chemical components associated with the Gaussian
components;

(6) Provide the probability map for decision-making
upon the likely chemical bonds or elements: Heat map
provides the probability of assigning a specified chemical
component to a given Gaussian component. The probability
tells how likely the chemical identification is, according to
the cross-correlation coefficient calculated.

As stated above in the peak matching workflow step
(4), synthetic spectra are generated as a superposition of
several Gaussian distributions at identified peak centre loca-
tions. This approach effectively captures the peak position
information while mitigating the influence of emission
intensity (peak heights). It facilitates cross-correlation for
measuring spectra similarity merely based on the peak
locations, avoiding the effect of the peak height variations.
The details of data preparation in (4) are: (i) Usually
the theoretical spectra data derived from the DOS model
have higher energy resolution than those from the SEM in
practice. Thus first, we downsample the theoretical spectra
data to match the energy resolution and range of the
experimental spectra data; (ii) Identify spectral peaks in both
theoretical (after downsampling) and experimental spectra
data; (iii) Utilising the identified spectral peak locations from
theoretical and experimental data, a group of Gaussian data
series is generated and superposed, called synthetic data here.
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Specifically, the peak locations serve as the mean of the
standard Gaussian distribution, with an associated standard
deviation set as 1.

To clarify, the Gaussian kernel width in the synthetic spec-
tra was chosen as 1 here, to ensure robust cross-correlation
matching for accommodating potential calibration misalign-
ment between experimental and theoretical spectra. For best
practice across diverse applications, we recommend tuning
the kernel width in a typical range from 0.5 to 1.5 eV. The
selection should consider: (a) instrument-related parameters,
particularly the energy resolution of the experimental spectra;
(b) the expected degree of calibration misalignment between
experimental and theoretical data; (c) the peak spacing within
the material spectral signatures. While larger kernel widths
improve tolerance to the spectral misalignment, they may
reduce sensitivity for distinguishing closely spaced peaks.
Overall, the automated multi-peak matching strategy within
a constrained energy range, combined with a probabilis-
tic confidence assessment for decision-making, enhances
the reliability of chemical assignments in our proposed
framework.

IV. CASE STUDY

A. BACKGROUND AND PROBLEM DESCRIPTION

We adopt the experimental SEHI data from [49] for evaluat-
ing the performance of the proposed framework. The study
from [49] aimed to understand the underlying relationships
between carbon and metal species on the nano-scale by
SEHI, which can boost the optimization and fabrication
of relevant key applications such as catalytic materials.
The complex metal alloy (palladium & silver) and carbon
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FIGURE 3. SEHI micrograph of a thick Pd-Ag-C metal film (named as “A6
PdAg thick” in [55]). Scale bar denotes 2 um.

films, abbreviated as Pd-Ag-C, were printed by University
of Liverpool and the raw SEM images were collected via a
Helios Nanolab G3 UC microscope [49]. The microscope
instrument was operated at a low-voltage energy ranging
from O to 7 eV to capture chemical information better, with
measurements taken in increments of 0.24 eV. Accordingly,
this results in an energy resolution, R.y, of 0.24 eV for
the collected spectral SEM images. Details about material
samples preparation, and experimental settings can be found
from [47] and [49]. The study [49] provides four SEHI
datasets collected from different Pd-Ag-C film specimens
with varying film thickness and surface roughness.

Fig. 3 shows a high-resolution surface micrograph acquired
by SEHI, depicting a thick Pd-Ag-C film sample with rel-
atively smooth surface morphology. We mainly investigated
this thick Pd-Ag-C specimen as an example to demonstrate
this framework. Here we first examine whether different
selections of ROIs can affect associated spectra curves. It can
help understand the limitations caused by manual selection
and conventional spatial averaging of ROIs. Fig. 4 (a) depicts
the result when the whole FOV is chosen, representing the
“global” information. In contrast, examples of the spectra
curves extracted from different small tiles in 3 pixels x
3 pixels are given in Fig. 4 (b)-(d), denoting the ‘local”
information. In the ““global” case, the spectrum curve clearly
exhibits only two predominant peaks, located at 1.99 eV
and 5.29 eV, shown in Fig. 4 (a). These two spectral
peaks well agree with the two peaks observed from the
earlier work [49]. In comparison, the peaks in the ‘“‘local”
examples are more diverse, with varying peak locations
and peak numbers in Fig. 4 (b)-(d). It suggests that by
spatially averaging over larger areas, manual selection of
the ROIs (or simply using the whole FOV) would limit
the comprehensiveness and accuracy of SEHI data analysis
results.

B. DATASETS AND DATA PREPARATION

The SEHI datasets used in this study are publicly available
in our data repository [55]. It [55] contains SEHI data
associated with four Pd-Ag-C specimens. For each specimen,
30 sequential SEM image slices were collected under the
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low-energy range of 0 to 7 eV. As mentioned above,
we mainly analysed the SEHI data associated with the thick
specimen which is named as “A6 PdAg thick” in [55]. The
raw image slices are first aligned using a template matching
algorithm [72]. The aligned SEHI data cube has dimensions
of 1517 pixels x 933 pixels x 30 spectra. The aligned image
stack is then partitioned into tiles in 3 x 3 pixels along the
image plane. It yields a total of 157,055 tiles, from which
522,098 spectral peaks are identified from 157,055 spectral
curves.

These 522,098 spectral data points are split into training,
validation, and test datasets, with 70% (365,469 data points)
used for training, 15% (78,315 data points) for validation,
and 15% (78,314 points) for testing, respectively. It is
not necessary to train a GMM model using the entire
training dataset. To improve computational efficiency for
the downstream clustering task, the training dataset is
further subsampled, as the computational costs of GMM
and DPGMM scale with the number of data points. Here,
we have a distribution-preserving subsampling strategy with
a reduction ratio of approximately 0.2. Our objective is to
preserve the probability distribution of the whole training
dataset while reducing the number of data points. Inspired
by stratified random sampling [85], we first construct a
probability histogram by dividing the whole training dataset
into groups (or bins) based on their energy values. Then,
a certain random sample can be drawn separately from the
bins. As shown in Fig. 5, the subsampled dataset preserves a
probability distribution closely resembling that of the entire
training set while efficiently reducing the dataset to 73,045
data points.

C. IMPLEMENTATION DETAILS AND EVALUATION
METRICS

After image tiling, two clustering methods, GMM and
DPGMM, are adopted to model the multi-peak distribution
of the spectral peaks. The implementations for both methods
are detailed below.

1) GMM IMPLEMENTATION

For scenario where the cluster number is not predefined, the
GMM is implemented alongside a model selection strategy to
determine the optimal number of clusters (K). This process
involves the elbow method to analyse the relative changes
in BIC values [78], [86], complemented by silhouette score
analysis [87] for cluster quality evaluation. Fig. 6 (a) depicts
the relative changes in BIC values as the number of clusters
increases. A clear “elbow” is observed when K equals
four, indicating that beyond this point, the model fit does
not improve significantly with more clusters. In addition
to BIC, silhouette score (s,) and the standard deviation of
Gaussian components (oy), are also used to determine the
optimal K. The silhouette score measures how similar a data
point is to its assigned cluster (cohesion) compared to other
clusters (separation) [87]. s, ranges from —1 to 1, where
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FIGURE 4. Examples of spectra curves extracted from the material sample shown in Fig. 3: (a) produced from the whole FOV,
(b)-(d) generated from individual, distinct 3 x 3 tiles. This illustrates the influence of manually selecting different ROIs.
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FIGURE 5. Comparison between the probability distributions of
subsampled training dataset (73,045 data points) and entire training
dataset (365,469 points). By visualising side-by-side probability
histograms, it demonstrates our distribution-preserving subsampling
strategy.

higher values indicate well-separated clusters, while negative
values suggest misclassification. It is often used to determine
the optimal number of clusters [88], particularly as internal
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evaluation metrics without requiring explicit labels. In this
study, the silhouette scores, s,,, are calculated using Euclidean
distance.

We introduce an overall score, s°¢"! as defined in (13).
Itis used to determine the optimal number of clusters K, in the
absence of ground truth labels. This overall score, s°V¢" all
combines the silhouette score s, analysis with a penalty
term based on ox. A higher score, soverall indicates better
clustering performance. The optimal number of clusters is
selected as the K that maximizes s°"*"*! after the “elbow”
point observed in the BIC curve. As shown in (13), s°¥*" all
combines: (1) the average and median silhouette scores across
all data points as clustering quality measures, (2) a penalty
term based on o, the maximum standard deviation of
all Gaussian components. This penalty term is motivated by
specific application considerations, where a larger standard
deviation is less preferred because it reflects a broader
chemical range for the associated Gaussian component,
showing greater uncertainty in the chemical identification.

savemll = T8 4 Smed —B max.

Ok (13)

where s, denotes the silhouette score of each data point, and is
calculated using Euclidean distance. s%"¢ and s¢“ represent
the average and median of s, across all N data points,
respectively. ox™* is the maximum standard deviation
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FIGURE 6. BIC values, silhouette scores and the overall score for finding
the optimal number of clusters for GMM implementation. The optimal
number of clusters is selected as 5 which maximises the overall score
soverall after the “elbow” point.

among all K Gaussian components. 8 is a hyperparameter
that controls the weight of the penalty term o;**. 8 € [0, 00)
and is set to 1 in this study.

Fig. 6 (b) illustrates the variation in the relevant scores as
the number of clusters changes. Consequently, the optimal
number of clusters, K, was set as 5, which gives the maximum
soverall after the elbow point in the BIC curve. Other parame-
ters set in GMM include: the maximum number of iterations
as 1500, the tolerance of objective function termination as
107, full covariance matrices, initial value setting method
as the K-means++ algorithm, a small regularization value
ranging from 107> to 1072, and 10 repetitions of the EM
algorithm using a new set of initial values. This small
regularisation term is added to the covariance matrices to
avoid numerical instability. It is set to 5.55 x 104, derived
from (0.1 x Rev)2, where R,y represents the energy resolution
of the discretised spectral data, which is 0.24 eV in this case.

2) DPGMM IMPLEMENTATION
The primary advantage of the DPGMM algorithm is the
cluster number is inferred from a DP prior automatically.
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TABLE 1. Evaluation of GMM fitting on different datasets.

Data Data Points s gmed Dyr
subsampled 73,045 0.6206  0.7112  0.0269
training 365,469 0.6207 0.7112  0.0269
validation 78,315 0.6221  0.7115  0.0275
test 78,314 0.6196  0.7091  0.0282
all 522,098 0.6207  0.7110  0.0274

The concentration parameter in the DP prior, «, governs
the probability of yielding new clusters, which means that
a greater o leads to more clusters. « is typically initialised
to 1 for weakly informative prior [66], [68]. Here the
hyperparameters o and \g are assigned small values to
impose weak priors, which allow flexibility in the cluster
parameters estimation. The DPGMM algorithm is fine-tuned
by changing the hyperparameters « and \g. Based on our
experimental evaluation (see Section V-C3 and Table 8 for
detailed results), we choose « as 1, and \g as 0.6. Regarding
other hyperparamters in the NIW prior, the parameters vy
is initialised to 1, So as the identity matrix, whilst gy =
le va: 1 Xi, with N = 157,055 represents all sample data
points in this case.

Variability across runs is a well-characterised and inherent
property of the DPGMM, arising directly from its Bayesian
non-parametric construction via the CRP [67]. This variabil-
ity is primarily influenced by the concentration parameter .
A higher o promotes the creation of new clusters, while a
lower o encourages the data points to join existing groups.
Consequently, different runs may yield different cluster labels
and slightly different numbers of components, particularly
for low-probability clusters. It is important to note that the
observed variability is not solely a function of the DPGMM
algorithm but also depends on the underlying distribution and
structure of the data. In our work, the DPGMM is executed
over 5 independent runs, with a maximum of 300 iterations
per run that ensured convergence in all runs. The final
model is selected as the one with the smallest negative log-
likelihood NLL. In addition, based on the mixture weights
w;, negligible Gaussian components with weights below
0.5% are discarded from the results, to reflect the dominant
distribution and structure of the spectral data. To adapt the
DPGMM method to different data structures and application
needs, we advise end users to tune key hyperparameters, such
as the concentration parameter ¢ and the maximum number
of iterations, and to perform multiple runs as a best practice.

In addition to the silhouette score, we evaluate the
performance of the trained Gaussian mixture model with the
Kullback-Leibler (KL) divergence [89]. While the silhouette
score offers an internal measure of clustering quality without
requiring ground truth, it does not reflect how well the
GMM model captures the true distribution of spectral
peaks. KL divergence complements this by comparing the
distribution of real spectral peak data with the estimated
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FIGURE 7. Comparison of the probability histograms of spectral peaks (left) and associated GMM clustering results

(right) when changing tile sizes.
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TABLE 2. Evaluation of DPGMM fitting on different datasets.

Data Data Points s smed Dkr
subsampled 73,045 0.6318  0.6981  0.0273
training 365,469 0.6318  0.6981  0.0265
validation 78,315 0.6333  0.6965  0.0273
test 78,314 0.6314  0.6954  0.0285
all 522,098 0.6320  0.6975  0.0274

distribution from the trained GMM model. To adopt KL
divergence into our study, we first sampled synthetic data
from the trained GMM, matching the sample size of the
real spectral dataset, to ensure a statistically consistent
comparison. Then the generated data points were discretised
by rounding to the nearest value in real spectral data,
aligning with the resolution of the real data. This ensured
identical binning schemes for the synthetic and real datasets.
Finally, we obtained probability distributions from the binned
datasets and computed the KL divergence to quantify the
difference between the true and modelled distributions.
A lower KL divergence indicates a closer alignment between
the trained model and the real data distribution, serving as a
complementary external measure of model performance.

V. RESULTS AND VALIDATION

A. RESULTS WITH GMM AND DPGMM

1) MODEL GENERALISATION EVALUATION

The clustering models are trained on the subsampled training
dataset. To examine the model generalisation capability, the
performance is evaluated across five datasets: the subsampled
training dataset, the entire training dataset, the validation
data, the test data, as well as all data. Performance metrics
include the average silhouette score s*¢, the median silhou-
ette score s¢?, and the KL divergence Dg; which quantifies
the difference between the real spectral data distribution and
that approximated by the trained GMM model.

Tables 1 and 2 summarise the performance evaluation
across different datasets by using GMM and DPGMM,
respectively. The results demonstrate strong model gen-
eralisation capabilities for both methods, with consistent
performance observed across all evaluated datasets. The
nearly identical evaluation performance between the sub-
sampled training and the entire training datasets validates
the effectiveness of the distribution-preserving subsampling
strategy. Both models, trained with GMM and DPGMM,
show no significant performance degradation when evaluated
on the validation and test datasets compared to the training
data. It demonstrates the good model generalisation to
maintain performance on unseen data.

2) RESULTS INTERPREATION

Fig. 7 (a) displays the probability distribution of spectral peak
positions extracted after tiling in 3 x 3 pixels. Fig. 7 (b)
shows the GMM results, where the red contour represents
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TABLE 3. Gaussian components obtained from GMM and DPGMM after
tiling in 3 x3. Numbers highlighted in bold represent the mean .. The
associated uncertainties are quantified using o (68% confidence interval)
and 26 (95% confidence interval).

Gaussian  Clustering Mean (eV)

68% confidence

Component Method 95% confidence

c GMM 0.81 + 0.21 0.81 + 0.42
! DPGMM  0.81 +0.21 0.81 + 0.41
c GMM 1.95 + 0.25 1.95 + 0.50
2 DPGMM  1.95 4 0.25 1.95 + 0.50
c GMM 3354055 3354 1.10
3 DPGMM  3.25+0.51 325+ 1.02
c GMM 4.50 + 0.60 4.50 + 1.19
4 DPGMM  4.36 + 0.66 436 + 131
c GMM 549 4+ 0.43 5.49 + 0.86
5 DPGMM  5.49 + 0.43 5.49 + 0.86

the estimated distribution as a superposition of five Gaussian
components. Table 3 presents the results obtained from GMM
and DPGMM methods. After fine-tuning, the DPGMM
yields a five-component Gaussian mixture. This enables
a direct performance comparison between the GMM and
DPGMM results with the same number of components in
the mixture. As shown in Table 3, these five Gaussian
components are denoted by Cj,...,Cs. It can be seen that
the results from GMM are quite close to that of DPGMM,
especially for C1, Cy, and Cs. The reason is that the peak
regions related to Cy, Co, and Cs are well-separated, clearly
seen in the histogram Fig. 7 (a). Whereas, distinguishing
peaks between 3-5 eV (C3, Cy) is challenging, due to the
electron contamination effects in SEHI measurements and
spectral overlap. Among the model parameters, mean g is
used for chemical identification. The o and 20 parameters
are utilised to quantify the uncertainty associated with 68%,
95% confidence level of the mean u. The related uncertainty
analysis on mean p is given in Table 3. The component
mixing proportion @ reveals the prevalence of SEs emitted
from the corresponding chemical elements or bond types.

Conventional data analysis by analysing of the whole FOV
reveals only two dominant peaks, located at approximately
2 eV and 5.3 eV, as shown in Fig. 4 (a). In contrast with
the earlier study [49], the image tiling not only allows
for recognising the two leading peaks, but also captures
three weaker peaks, illustrated by the histogram in Fig. 7
(a) and (b). This highlights the advantage of the proposed
framework, which offers more accurate chemical analysis
compared to conventional methods that rely on manual
selection of ROIs.

B. CHEMICAL ANALYSIS AND ACCURACY EVALUATION

In this case study, the relevant chemical elements and bonds
of the complex Pd-Ag-C films being investigated include
silver Ag, palladium Pd, sp? carbon and sp> carbon, from
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FIGURE 8. Probability heat map which depicts how likely to assign the chemical elements or bonding types to the Gaussian
components C; to Cs. (a) and (b) are obtained from GMM and DPGMM, respectively.

the expert’s prior knowledge. Accordingly, four relevant DOS
models are retrieved from the Materials Project data [53] and
used as references to deduce the associated materials with
the five Gaussian components obtained from the proposed Al
framework.

Fig. 8 gives the probability heat map using the proposed
peak matching approach. Following the peak matching step
(1) as described in Section III-E, the preliminary selection
is conducted by comparing the spectral peak locations in
the four reference DOS models with the five Gaussian
components. Specifically, a probability of 0 indicates that
no spectral peaks in a reference DOS model fall within
the energy range for a given Gaussian component. For
instance, for the Gaussian component Cj, only one DOS
candidate, Pd, meets the preliminary selection criteria, thus
being assigned a probability of 1. Following the preliminary
selection, for C> to Cs, multiple DOS candidates meet the
preliminary criteria. Thus further peak matching steps (4) and
(5) are performed to obtain similarity measures. Then the
normalized cross-correlation coefficient is used to calculate
the probability of assigning chemical species to the Gaussian
components (see Section III-E for method details). Given by
Fig. 8, the probability outcomes from GMM and DPGMM
are relatively close to each other, particularly for the Gaussian
components Cy, C; and C3.

According to the probability heat maps given in Fig. 8, the
most likely chemical elements associated with each Gaussian
component are, C1: Pd, Cp: Pd and sp2 carbon, Cs: sp2 car-
bon, Ag and Pd, C4: Ag, Pd and sp2 carbon, Cs: sp3 carbon,
Ag and sp? carbon. Accordingly, Fig. 9 (a)-(e) shows the
five informative chemical maps associated with five Gaussain
components (see Section III-D1 for method details). These
maps allow the visualisation of the surface morphology,
combined with the materials chemistry informatics. This
holds significant scientific value for advancing our fun-
damental understanding of structure-property relationships
in materials, and offering industrial benefits by enabling
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advanced precision manufacturing of complex functional
materials. For instance, through the comparison between the
maps associated with C; and Cs, given in Fig. 9 (a) and
(e), we can observe the heterogeneous spatial distribution
of two metals, Pd and Ag. This is valuable for analysing
metal alloy composition, which can reveal structure-property-
process links to guide the film printing process.

The accuracy of chemical identification is assessed with
reference to the theoretical DOS models. Here the peak
position obtained from experimental SEHI data is denoted
as an,k’ whilst that derived from the theoretical DOS
model is represented as ,urTm ¢ Accordingly, their relative
errors, denoted as A, x, can be calculated in percentage,
with respect to the theoretical values ,uz;h ¢ The relative
error, A, k, quantifies the accuracy of assigning the m-th
chemical bonding types (or elements) to the k-th Gaussian
component. Then we quantify the overall error of the k-th
Gaussian component in chemical bonding identification.
By comparing the spectral peak locations of the relevant
experimental and theoretical data, the overall error is
computed as follows

Ni Ni ME Y — N«T L
Ape = D hngc A = D g —"——"=100%
m=1 m=1 Fom.k

(14)

where Apuy denotes the overall error of the k-th Gaussian
component (Cy) for chemical bonding identification. Ay, x is
the probability of assigning m-th chemical bond to Cy. A
is the weighted sum of relevant errors A, r associated with
Cy, whilst Ny is the number of likely chemical bonds with Cy.

Since each Gaussian component Ci can result from a
mixture of several chemical species, the number of relevant
likely chemical species is denoted as Ny. The probability /,,, x
is utilized as the weight when summing all relevant errors
Apmi(m = 1,---, Ni) associated with Cy. As explained
by (14), the overall error Auy is calculated, used for the
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FIGURE 9. Individual intensity maps associated with Gaussian components C,-Cs, derived from the film shown in Fig. 3. These Gaussian

components are most likely, C;: Pd, C,: Pd and sp2-carbon, C5: sp?-carbon, Ag and Pd, C,: Ag, Pd and sp?-carbon, Cs: sp3-carbon, Ag and
2
sp*-carbon.
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(b) Accuracy heat map obtained from DPGMM.

FIGURE 10. Accuracy heat map depicting the relative errors (calculated from (14) ) in assigning the chemical bonding or elements to the
corresponding Gaussian components. Note that the negative sign indicates that the SEHI experimental results are smaller than the
theoretical DOS values. (a) and (b) are obtained from GMM and DPGMM, respectively.

overall accuracy evaluation when assigning the chemical
species to the Gaussian component Cy.

Fig. 10 depicts the outcomes of accuracy evaluation for
assigning the potential four chemical elements or bonds (Ag,
Pd, sp? carbon and sp® carbon) to the five Gaussian com-
ponents (Cy, ..., Cs) obtained from GMM and DPGMM.
The overall errors are computed by combining the probability
heat map (see Fig. 8) with the relevant errors of each likely
chemical bond or element, as given by (14). In other words,
the overall errors are the weighted sum of the individual errors
by column-wise. The error results are shown in percentage.
As observed in Fig. 10, two methods, GMM and DPGMM,
achieve comparable performance in terms of the overall
accuracy with reference to the DOS model. Besides, it can
be seen that except the Gaussian component Cj, the errors of
other four Gaussian components are in the range of +15%,
which well demonstrates the good capability and accuracy of
this AI framework for chemical identification. The error of
C is larger than those of C», ..., Cs, since Cj is associated
with the lowest spectral peak in the energy range. This results
from higher signal noises in the lower energy range, due
to the instrumentation limitations in the SEs detector. From
the Gaussian components Cj to Cs, as the energy values of
their spectral peaks become higher, the corresponding relative
errors are getting lower.

C. ABLATION STUDIES

1) EFFECT OF TILE SIZE

In principle, when a finer tile is deployed, more tiles are
produced from a single SEHI data cube. It increases the
data points of spectral peaks that constitute the distribution.
This makes the distribution statistically representative and
meaningful to meet the assumption of Gaussian distributions.
Nevertheless, very fine tiles would become sensitive to
signal noise and other sources of uncertainty, which can
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reduce the reliability and stability of data analysis. Due to
these concerns, we investigate how the tile size affects the
distribution of spectral peaks and the subsequent probabilistic
clustering results.

In comparison with the small tile of 3 x 3 pixels applied
above, three larger sizes, 5 x 5,9 x 9, and 15 x 15 in
pixels, are examined. The GMM algorithm is implemented
with a fixed cluster number equal to five. And details of
the hyperparametes settings in GMM and DPGMM are
provided in Section IV-C. Fig. 7 depicts the probability
histograms and the model fitting results by GMM. From the
histograms, through comparisons of the four tile sizes, the
good agreement of two outstanding peaks, at around 2 eV
and 5.3 eV, can be found. With larger tile sizes, the leading
portions of these two predominant peaks are more noticeable.
It is because less “local” information is accounted into the
peak distribution. In contrast, with the fine tile of 3 x 3 pixels,
more small peaks, appearing below 1 eV and ranging in
3-5 eV, are distinguished. As shown in Fig. 7, larger tile
sizes lead to spectral peak suppression due to spatial aver-
aging. This key finding clearly demonstrates a fundamental
limitation of the conventional manual workflows that utilise
the whole FOV or large ROIs for material analysis with
microscopy. We find that such spatial averaging can obscure
fine-grained chemical heterogeneity, and suppress weak
spectral signatures, particularly problematic when examining
subtle chemical variations at the sub-micron and nano-scale.

According to the distribution histograms given by Fig. 7,
we recommend using tile sizes ranging from 3x3 to 9x9
pixels to effectively capture “local” information and subtle
chemical variations, in such case of the SE image in size
of 1517 x 933 pixels. It is worth noting that the optimal
choice of tile size is application-specific and involves a
trade-off between several key considerations. In practical
applications, the selection of tile size is highly application-
dependent. This choice is influenced by multiple factors,
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including microscopy parameters (e.g., horizontal field of
view), material properties under analysis (e.g., physical
scale of the target chemical features required for analysis,
chemical information depth), and experimental conditions
(e.g., noise characteristics). In addition to these application
needs, selecting an appropriate tile size also involves
trade-offs between spatial resolution, spatial size, noise
sensitivity, computational efficiency, and spectral fidelity
(e.g., preserving weak spectral signatures). We acknowledge
that a comprehensive study on the tile size is a promising
direction for future work, particularly for validating and
optimising the framework across diverse material systems.
To facilitate reproducibility and further experimentation,
the code for the Al-assisted tool and the SEHI dataset
are publicly available from [55] and [56]. Tables 4 and 5
summarise the model parameters computed by GMM and
DPGMM. The results are collected under four levels of
tile sizes, detailing about the associated tile number, data
points for training, and computation time. By comparison
between GMM and DPGMM results, good agreement in the
estimated model parameters can be found. While DPGMM
requires much longer computation time than GMM, DPGMM
slightly outperforms in terms of the robustness to the
tile size variations. This point is evident for the mean
energy values p, which are important for accurate chemical
identification. In contrast, the component proportion w and
standard deviation o show more variability across tile sizes.
This is reasonable because the tile size directly determines
how much the “local” information is captured, thus affecting
the observed peak distributions as seen in Fig. 7. For
large-scale industrial deployment, the DPGMM method
could be accelerated by parallel processing of independent
tiles across multiple CPU cores. Besides, GPU acceleration
could further improve processing speed, making real-time
analysis feasible for high-throughput applications.

2) FEATURE ANALYSIS
To investigate the significance of spectral peak position as the
sole feature, we compare it with a 2D feature combining peak
position and peak height. As shown in Fig. 11, the bivariate
histogram visualises the joint probability distribution of
peak position and peak height. It demonstrates that peak
height varies significantly at the fixed peak positions. This
observation reveals the variability of peak height which
can be strongly influenced by material surfaces roughness,
experimental instruments and conditions, as discussed in
Section III-B. By comparison with Fig. 7 (a), it can be found
that using peak position alone leads to more distinct and
separable clusters than the combination with peak height.
We further evaluate the impact of adding the peak height
as an additional feature through a feature ablation study.
The clustering quality is assessed using silhouette scores
as a quantitative measure, in the absence of ground truth
labels. The distribution of the silhouette score s, across all N
data points is characterised by four statistics, which include
the average value s?8, first quartile 51 median s, and
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TABLE 4. GMM clustering results with varying tile sizes.

Tile  Tile Data  Comput. Model Gaussian Component

Size Number Points Time' Param.2 C; Cy Cs3 Cy Cs

w(%) 924 2791 19.55 1827 25.05
3*3 157,055 73,045 7mins p(eV) 0.81 195 335 450 549
o@V) 021 025 055 060 043

w (%) 928 2943 19.13 837 33.80
5*5 56,358 25,653 4mins pu(eV) 0.78 195 337 422 530
o@€V) 019 020 044 031 045

w (%) 655 3147 20.06 2571 16.21
9%9 17,304 15,174 3mins y(eV) 0.75 194 343 4.89 529
o@V) 018 0.15 041 068 021

w (%) 240 3328 17.49 21.56 2527
13,150 2mins p(eV) 075 193 339 447 5.27
o@V) 017 013 034 073 020

15*%15 6,262

! Matlab code running on a laptop with Intel Core i7-11800H processor.
2 Model parameters include component mixing proportion w (%), mean p (V)

and standard deviation o (eV).

TABLE 5. DPGMM clustering results with varying tile sizes.

Tile  Tile Data  Comput. Model Gaussian Component

Size Number Points Time! Param.2 C; Cy Cs3 Cy Cs

w(%) 922 2793 1523 2235 25.11
3*3 157,055 73,045 3.6hrs p(eV) 0.81 195 325 436 549
o(V) 021 025 051 066 043

w (%) 929 29.11 21.70 11.43 28.46
5%¥5 56,358 25,653 l1.4hrs (V) 079 195 346 452 537
o@€V) 019 020 053 054 043

w (%) 655 3139 12.62 2997 1942
9%9 17,304 15,174 45mins y(eV) 0.75 194 332 4.52 529
o@V) 018 015 032 084 024

w (%) 240 3327 1932 19.96 24.96
15%¥15 6,262 13,150 35mins yx(eV) 0.75 193 342 455 5.27
o(€V) 017 012 036 071 0.20

third quartile s23. Table 6 gives the clustering performance
obtained from the GMM approach with a fixed cluster
number K of 5 for comparability. It compares three feature
sets, including peak position alone, peak position with raw
peak height, and peak position with normalised peak height
ranging from O to 1. The results show that incorporating
peak height as a second feature leads to lower silhouette
scores, compared to using peak position alone. It suggests
that including peak height as an additional feature reduces
the clustering quality. Thus, only the peak position is used
as the spectral feature for reliable chemical identification of
materials.

3) SELECTION OF HYPERPARAMETERS
To explore the effect of hyperparameters on the model

performance, experiments are conducted with tile size of 3 x
3 pixels. The performance of GMM and DPGMM are
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FIGURE 11. Bivariate histogram showing the joint probability distribution
of spectral peak position and peak height, with a 3x3 tiling. The peak
height represents SEs emission intensity, scaled to the range of 0 to

1 using min—-max normalisation.

TABLE 6. GMM clustering performance using different feature sets.
Feature sets include peak position alone, peak position with raw peak
height, and peak position with normalised peak height.

Feature Set 58 st smed 593

peak position 0.6221 0.5688 0.7115 0.7755
peak position and height 0.1768 -0.1515 0.2488 0.4745
peak position and normalised height 0.5034 0.3994  0.6748 0.7493

displayed in Tables 7 and 8, respectively. The performance
evaluation include the negative log-likelihood NLL, the
overall silhouette score s and the KL divergence Dgr,
which describe the goodness of model fitting. Table 7
shows the results by GMM with the regularisation value
changing from 1073 to 10~ with two initialisation methods.
As observed, the results by GMM are relatively stable with
the k-means++ initialisation and the regularisation value
changing from 107> to 10~*, which corresponds to (0.025 x
Rev)? t0 (0.1 x R.y)?. The k-means—++ initialisation shows
superior modelling performance and greater robustness
compared to random initialisation. Thus, we choose the k-
means++ initialisation and set the regularisation value as
(0.1 x R.v)?* to improve numerical stability in the GMM
implementation.

Table 8 shows the results by DPGMM with changing two
hyperparameters o and \g. They control the level of the DP
prior in creating new clusters and the Gaussian components in
the NIW prior, respectively. To allow flexibility in the cluster
structure, small values are assigned to @ and )\g, over a €
{0.6,0.8, 1.0, 1.2} and )y € {0.4, 0.6, 0.8}. The performance
results of DPGMM with a combination of changing « and A\
are listed in Table 8. It can be observed that larger « leads
to more clusters. And the results are relatively stable with
changing «. The results are more sensitive to Ag than «. Two
setsof o =1, \gp = 0.6 and @ = 1.2, A9 = 0.6 yield optimal
performance, as evidenced by low values NLL, high values
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TABLE 7. GMM performance under different hyperparameters.

Regularisation Comput. o ‘
N P Initialisation K* NLL® s®¢l Dy,

Value From?

128441 0.6424 0.1532
122666 0.5962 0.0402
122189 0.6455 0.0282
122215 0.5394 0.0295
122156 0.7349 0.0269
122195 0.4504 0.0281
122155 0.7498 0.0270
118703 0.3739 0.0235
122155 0.7400 0.0268
117602 0.3767 0.0226

s 5 k-means++
1.39 x 10 (0.5 X Rey)
random

. k- ++
222x 1073 (02 x Ry)? oS
random

5.55 x 107% (0.1 x R,y )?
random

3

4

5

4
k-means++ 5
5
130 x 104 (0.05 x Ryy)?  SmeanST+ 5
random 6
347 X 1075 (0.025 x Ryy)? ~meanstE S
random 6

3 Regularisation value is scaled based on the energy resolution, R,y, which
is roughly 0.24 eV in this study.

4 K is the optimal cluster number with GMM (see Section IV-C for details).

5 NLL denotes the negative log-likelihood, which equals —/nL(X | w, u, )
given in Eq. 2.

TABLE 8. DPGMM performance under different hyperparameters.

a AO KG NLLS Savemll DKL

0.6 0.4 4 122199 0.5310 0.0278
0.6 0.6 5 122190 0.5662 0.0275
0.6 0.8 4 128125 0.5468 0.1432
0.8 0.4 4 122198 0.5232 0.0273
0.8 0.6 5 122172 0.6103 0.0281
0.8 0.8 5 122196 0.5191 0.0275
1.0 0.4 4 122198 0.5226 0.0283
1.0 0.6 5 122157 0.6739 0.0273
1.0 0.8 6 122158 0.7092 0.0290
1.2 0.4 4 124140 0.5446 0.0662
1.2 0.6 5 122160 0.6800 0.0276
1.2 0.8 6 122114 0.4458 0.0270

6 K is the cluster number automatically inferred from DPGMM .

soverall and low Dg L. Thus we set @ = 1 and \g = 0.6 for
the DPGMM implementation, which shows the lowest NLL.

4) UNCERTAINTY QUANTIFICATION

Considering that signal noise in the collected spectral data
is a primary source of uncertainty, we evaluate its influence
on the overall framework in this section. The impact of noise
propagation on the final chemical identification is quantified
through Monte Carlo simulations. Specifically, two levels
of Gaussian noise are injected into the raw SEHI data to
simulate slightly and heavily contaminated spectral signals.
Following the recent work [90], the injected Gaussian noise
has a mean of zero. For the slight and heavy noise conditions,
the standard deviations of the Gaussian noise are set to
0.1 and 0.5 times the standard deviation of the raw SEHI data,
respectively. For each noise level, 25 Monte Carlo runs were
performed. To assess the uncertainty in the resulting chemical

VOLUME 13, 2025



J. Zhang et al.: Toward Automated Chemical Analysis of Materials Using SEHI and Unsupervised Learning

IEEE Access

127
¥ Ag
1r* i Pd
sz
0.8 ¥ sp3
=
3 0.6
8 * *
o
0.4 1
*¥z. ¥
0.2}
*
0 . . . . .
c, c, c, c, C,

Gaussian component

(a) Uncertainty of material assignment under slight noise.

121
¥ Ag
1% ¥ Pd
sp2
0.8Ff E sp®
>
§06
£ % *
o
04} ¥
*
* %
0.2t
%
0 , , , , ,
c, c, C, c, C,

Gaussian component

(b) Uncertainty of material assignment under heavy noise.

FIGURE 12. Uncertainty quantification of material assignment using Monte Carlo simulations. The median values of 25 Monte Carlo outputs
are marked with *, and error bars represent the 2.5th and 97.5th percentiles as lower and upper bounds. It shows 95% confidence intervals for
assigning the chemical elements or bonding types (Ag, Pd, sp? carbon, sp3 carbon) to five Gaussian Components C; to Cs. (a) and (b) are

computed under slight and heavy noise conditions, respectively.

probability maps, 95% confidence intervals are computed.
The median value across the 25 Monte Carlo outputs is used
to represent the central estimate of the material assignment.
The confidence bounds are determined using the 2.5th and
97.5th percentiles of the Monte Carlo results. Fig. 12 shows
the uncertainty of the material assignment associated with
95% confidence intervals obtained under two varying noise
levels.

Monte Carlo simulation results indicate that the proposed
framework maintains good robustness and reliability in
material identification, under varying levels of noise. For
the component C;, the associated material is confidently
identified as Pd. The reason is that its characteristic spectral
peak occurs at a low energy below 1 eV, which is not present
in any of the other candidate materials. As shown in Fig. 12
(a), when slight noise is injected, no observable uncertainty
appears in the material assignments for the components C
and Cs. In contrast, the components C; and Cy4 exhibit some
variability in the 2-4 eV energy range, suggesting larger
sensitivity to noise in material assignments. Under heavy
noise injection, C; remains unchanged, and Cs shows only
a negligible shift, as shown in Fig. 12 (b). The increased
uncertainty in C3 and C4 can be attributed to the close
proximity of their cluster centres in terms of the peak
position, making them more susceptible to noise. Moreover,
the presence of multiple mixed materials within C3 and Cy4
further complicates accurate material identification.

D. VALIDATION ACROSS DIFFERENT MATERIAL SAMPLES

To further validate the performance of this framework,
experiments are conducted with different material samples.
As mentioned in Section IV, there are four Pd-Ag-C film
specimens with varying surface roughness and film thickness.
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TABLE 9. GMM results on four SEHI datasets from different Pd-Ag-C film
samples.

Sample Tile Data  Model Gaussian Component s ol De

Num. Points  Para. Cy Cy Cs Cy Cs

thick w(%) 125 2784 19.84 2552 2555
porous 153,384 70916 (V) 097 197 3.18 436 544 05936 0.6921 0.0256
(A5) oc@eV) 028 025 068 062 036
thick w(%) 924 2791 1955 1827 25.05
smooth 157,055 73,045 p(eV) 081 195 3.35 450 549 0.6206 0.7112 0.0269
(A6) oc@V) 021 025 055 06 043
thin w(%) 147 3197 3578 1514 15.65
smooth 156,663 72308 1 (cV) 0.88 199 392 516 567 05832 0.6713 0.0272
(A7) (V) 023 023 071 04 031
thin w(%) 111 2908 3303 1471 22.07
porous 157,170 73,709 (V) 0.79 188 3.55 4.66 546 04782 0.6173 0.0282
(A8) oc@V) 019 025 079 057 04

These four samples correspond to AS, A6, A7, and A8 in the
data repository [55]. They are characterized as thick porous,
thick smooth, thin smooth, and thin porous, respectively.
Based on the performance analysis above, the GMM and
DPGMM approaches generally achieve comparable perfor-
mance. Thus for high computational efficiency, the GMM
with tiling in 3 x 3 pixels is employed here. Table 9 sum-
marises the outcomes of GMM clustering and corresponding
performance metrics, from four Pd-Ag-C film specimens.
As observed, the framework demonstrates consistent and
good performance with different material samples in terms of
s"¢ and Dg; . Compared with the previous study [49], this
framework enables more comprehensive chemical analysis
through the tile-wise processing. It provides a promising
solution for analysing subtle variations in chemical com-
position between morphologically diverse specimens, even
within the same material type. This can facilitate systematic
experimental studies of complex material systems.
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E. DISCUSSION

As shown in the case study, only two prime spectral
peaks, denoting Ag and sp>-dominant carbon materials, are
noticeable from the previous study [49]. However, more
than two peaks are expected to be observed in the printed
complex Pd-Ag-C film. This novel Al framework proposed
enables us to detect five peaks, providing more effective
and accurate surface chemical analysis. The results show
good accuracy and robustness to changes in the tile size, and
different material samples, which demonstrates the reliability
of this AI framework for materials applications. The relevant
SEHI dataset [55] and the Matlab code package [56]
presented in this study are publicly shared. A unique
aspect is that this framework links the theoretical DOS
model [83], [84] with the experimental findings with SEHI
technique. The Materials Project [53] provides over 89k
database entries of the DOS model, publicly available as a
reference to this framework proposed for automated chemical
analysis.

Although the present case study focuses on Pd-Ag-C films,
the proposed approach is generic, and can be applied to
other material systems. SEHI has previously demonstrated its
applicability across a range of material systems, including the
ability to image oxidation processes in polymers [48], [91]
and to differentiate between different forms of carbon [82],
underscoring its chemical sensitivity across diverse classes of
materials. These capabilities suggest that the approach can be
readily extended to other relevant systems, where nanoscale
variations in chemistry play a critical role.

As mentioned above, SEHI provides chemical
bonding-level information at the nanoscale. Owing to the
fundamental differences in information depth and analytical
capabilities, a direct comparison for external validation, such
as between SEHI and SEM-EDS techniques, is not feasible
within the scope of this study. It would be beneficial to
consider how this Al-powered SEHI-based approach could
complement other established surface-sensitive methods.
For example, X-ray photoelectron spectroscopy (XPS)
provides highly quantitative surface chemical information,
with sensitivity to elemental composition and bonding states.
But it is limited in spatial resolution and requires ultra-high
vacuum conditions. In contrast, SEHI can deliver nanoscale,
spatially resolved contrast linked to surface chemistry under
more flexible imaging conditions. This suggests that, when
employed in combination, XPS and SEHI techniques have the
potential to offer enhanced chemical specificity and spatial
mapping. Similarly, atomic force microscopy (AFM) yields
topographical and mechanical property information at the
nanoscale, but does not directly probe chemical variation.
SEHI can complement AFM by providing chemically
sensitive contrast in the same regions where mechanical
or morphological variations are observed [92], thereby
strengthening correlations between structure, chemistry, and
function.

This work mainly relys on the direct link with the theo-
retical DOS model for chemical assignments and accuracy
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evaluation. Meanwhile, please note that the DOS model
derived from density functional theory (DFT) calculations
may exhibit systematic shifts or inaccuracies when compared
to experimental SEHI spectra, particularly due to surface sen-
sitivity and instrument-specific effects. Such factors should
be considered when interpreting chemical assignments,
and proper calibration should be implemented in practice
to ensure meaningful comparison between theoretical and
experimental data. In this work, energy alignment was
calibrated using an HOPG reference specimen, by applying
an energy shift based on comparison to sp? and sp3
carbon bonding [69]. Detailed calibration procedures can be
found from the Supporting Information in [69] shown in
Fig. S10 (d).

Our results demonstrate that the proposed approach
provides reliable decisions. However, ambiguities could
occur when multiple peaks have similar amplitudes and
are very close to each other. These close peaks might be
identified as corresponding to the same chemical compo-
nents. Such situations will be reflected in the probability
heatmap. To facilitate the decision in such cases, specific
experimental reference samples could be designed and used
for existing experimental data collection. We demonstrated
the impact of experimental samples for carbon [82].
Additionally, experimental collection parameters [70] or
instrumentation that allows collection with high spectral
resolution, such as add-on spectrometers [74], might be
necessary. Alternatively, complementary nano-spectroscopy
such as nanoscale Fourier transform infrared spec-
troscopy (nano-FTIR) might be adopted as demonstrated
in [75].

VI. CONCLUSION

This paper proposes a novel Al framework that leverages
unsupervised machine learning to enable automated char-
acterisation of materials’ surface chemistry. The proposed
framework caters for data-driven materials discovery as well
as systematic experimental studies of functional materials.
It offers valuable insights into identifying chemical elements
and bonds, and characterising chemical inhomogeneity on
complex material surfaces at the micro- and nano-scale.

The focus of this work is on the integration of image
tiling and unsupervised clustering with SEHI data analysis.
A unique contribution is that the proposed framework
connects the theoretical models with the experimental SEHI
results. Image tiling captures the diversity of localised
spatial-spectral information within a SEHI data cube, avoid-
ing the manual selection of ROIs. Unsupervised probabilistic
clustering methods, GMM and DPGMM, are adopted to
model the energy distribution of spectral peaks extracted
from each tile. The case study on complex metal alloy
and carbon films demonstrates that this framework effec-
tively uncovers previously undetected chemical properties
within SEHI experimental data. It achieves high accu-
racy in chemical identification, with relative errors under
+15% when compared to the theoretical DOS model,
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except for one Gaussian component associated with the
lowest energy. Future work will focus on automating
the chemical analysis for a wide range of materials and
exploiting additional features such as peak widths and
heights, with enhanced instrumentation. Besides, future
studies could benefit from multi-modal measurements,
by integrating SEHI with complementary techniques, to fur-
ther enhance the analytical confidence and robustness.
Validation using synthetically generated data, along with
comparisons between SEHI and SEM-EDS results, is another
open avenue that can provide deeper insights into both
techniques.
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